Instruction Set Principles
and Examples

An Add the number in storage location n into the accumulator.

En If the number in the accumulator is greater than or equal to
zero execute next the order which stands in storage location n;
otherwise proceed serially.

z Stop the machine and ring the warning bell.

Wilkes and Renwick
Selection from the List of 18 Machine
Instructions for the EDSAC (1949)

B-2

Appendix B Instruction Set Principles and Examples

B.1

Introduction

In this appendix we concentrate on instruction set architecture—the portion of
the computer visible to the programmer or compiler writer. Most of this material
should be review for readers of this book; we include it here for background. This
appendix introduces the wide variety of design alternatives available to the
instruction set architect. In particular, we focus on four topics. First, we present a
taxonomy of instruction set alternatives and give some qualitative assessment of
the advantages and disadvantages of various approaches. Second, we present and
analyze some instruction set measurements that are largely independent of a spe-
cific instruction set. Third, we address the issue of languages and compilers and
their bearing on instruction set architecture. Finally, the “Putting It All Together”
section shows how these ideas are reflected in the MIPS instruction set, which is
typical of RISC architectures. We conclude with fallacies and pitfalls of instruc-
tion set design.

To illustrate the principles further, Appendix J also gives four examples of
general-purpose RISC architectures (MIPS, PowerPC, Precision Architecture,
SPARC), four embedded RISC processors (ARM, Hitachi SH, MIPS 16,
Thumb). and three older architectures (80x86, IBM 360/370, and VAX). Before
we discuss how to classify architectures, we need to say something about instruc-
tion set measurement.

Throughout this appendix, we examine a wide variety of architectural mea-
surements. Clearly, these measurements depend on the programs measured and
on the compilers used in making the measurements. The results should not be
interpreted as absolute, and you might see different data if you did the measure-
ment with a different compiler or a different set of programs. We believe that the
measurements in this appendix are reasonably indicative of a class of typical
applications. Many of the measurements are presented using a small set of bench-
marks, so that the data can be reasonably displayed and the differences among
programs can be seen. An architect for a new computer would want to analyze a
much larger collection of programs before making architectural decisions. The
measurements shown are usually dvnamic—that is, the frequency of a measured
event is weighed by the number of times that event occurs during execution of the
measured program.

Before starting with the general principles, let’s review the three application
areas from Chapter 1. Desktop computing emphasizes performance of programs
with integer and floating-point data types, with little regard for program size or
processor power consumption. For example, code size has never been reported in
the five generations of SPEC benchmarks. Servers today are used primarily for
database, file server, and Web applications, plus some time-sharing applications
for many users. Hence, floating-point performance is much less important for
performance than integers and character strings, yet virtually every server proces-
sor still includes floating-point instructions. Embedded applications value cost
and power, so code size is important because less memory is both cheaper and
lower power, and some classes of instructions (such as floating point) may be
optional to reduce chip costs.

B.2

B.2 Classifying Instruction Set Architectures « B-3

Thus, instruction sets for all three applications are very similar. In fact, the
MIPS architecture that drives this appendix has been used successfully in desk-
tops, servers, and embedded applications.

One successful architecture very different from RISC is the 80x86 (see
Appendix J). Surprisingly, its success does not necessarily belie the advantages
of a RISC instruction set. The commercial importance of binary compatibility
with PC software combined with the abundance of transistors provided by
Moore’s Law led Intel to use a RISC instruction set internally while supporting
an 80x86 instruction set externally. Recent 80x86 microprocessors, such as the
Pentium 4, use hardware to translate from 80x86 instructions to RISC-like
instructions and then execute the translated operations inside the chip. They
maintain the illusion of 80x86 architecture to the programmer while allowing the
computer designer to implement a RISC-style processor for performance.

Now that the background is set, we begin by exploring how instruction set
architectures can be classified.

Classifying Instruction Set Architectures

The type of internal storage in a processor is the most basic differentiation, so in
this section we will focus on the alternatives for this portion of the architecture.
The major choices are a stack, an accumulator, or a set of registers. Operands
may be named explicitly or implicitly: The operands in a stack architecture are
implicitly on the top of the stack, and in an accumulator architecture one operand
is implicitly the accumulator. The general-purpose register architectures have
only explicit operands—either registers or memory locations. Figure B.1 shows a
block diagram of such architectures, and Figure B.2 shows how the code
sequence C = A + B would typically appear in these three classes of instruction
sets. The explicit operands may be accessed directly from memory or may need
to be first loaded into temporary storage, depending on the class of architecture
and choice of specific instruction.

As the figures show, there are really two classes of register computers. One
class can access memory as part of any instruction, called register-memory archi-
tecture, and the other can access memory only with load and store instructions,
called load-store architecture. A third class, not found in computers shipping
today. keeps all operands in memory and is called a memory-memory architec-
ture. Some instruction set architectures have more registers than a single accumu-
lator, but place restrictions on uses of these special registers. Such an architecture
is sometimes called an extended accumulator or special-purpose register com-
puter.

Although most early computers used stack or accumulator-style archi-
tectures, virtually every new architecture designed after 1980 uses a load-store
register architecture. The major reasons for the emergence of general-purpose
register (GPR) computers are twofold. First, registers—like other forms of stor-
age internal to the processor—are faster than memory. Second, registers are more

B-4 Appendix B Instruction Set Principles and Examples

{a} Stack {b) Accumulator {c) Register-memory {d} Register-register/load-store

-

SN S—

i
Procassor

froshT]

]\

Figure B.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the oper-
and is an input or the result of the ALU operation, or both an input and result. Lighter shades indicate inputs, and the
dark shade indicates the result. In (a), a Top Of Stack register (TOS), points to the top input operand, which is com-
bined with the operand below.The first operand is removed from the stack, the result takes the place of the second
operand, and TOS is updated to point to the result. All operands are implicit. In (b), the Accumulator is both an
implicit input operand and a result. In (c), one input operand is a register, one is in memory, and the result goes to a
register. All operands are registers in (d) and, like the stack architecture, can be transferred to memory only via sepa-
rate instructions: push or pop for (a) and load or store for (d).

Register
Stack Accumulator (register-memory) Register (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R3,R1,B Load R2,B
Add Store C Store R3,C Add R3,R1,R2
Pop C Store R3,C

Figure B.2 The code sequence for C = A + B for four classes of instruction sets. Note
that the Add instruction has implicit operands for stack and accumulator architectures,
and explicit operands for register architectures. It is assumed that A, B, and C all belong
in memory and that the values of A and B cannot be destroyed. Figure B.1 shows the
Add operation for each class of architecture.

B.2 Classifying Instruction Set Architectures = B-5

efficient for a compiler to use than other forms of internal storage. For example,
on a register computer the expression (A*B) — (B*C) — (A*D) may be evaluated
by doing the multiplications in any order, which may be more efficient because of
the location of the operands or because of pipelining concerns (see Chapter 2).
Nevertheless, on a stack computer the hardware must evaluate the expression in
only one order, since operands are hidden on the stack, and it may have to load an
operand multiple times.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (since
registers are faster than memory), and the code density improves (since a register
can be named with fewer bits than can a memory location).

As explained in Section B.8, compiler writers would prefer that all registers
be equivalent and unreserved. Older computers compromise this desire by dedi-
cating registers to special uses, effectively decreasing the number of general-
purpose registers. If the number of truly general-purpose registers is too small,
trying to allocate variables to registers will not be profitable. Instead, the com-
piler will reserve all the uncommitted registers for use in expression evaluation.

How many registers are sufficient? The answer, of course, depends on the
effectiveness of the compiler. Most compilers reserve some registers for expres-
sion evaluation, use some for parameter passing, and allow the remainder to be
allocated to hold variables. Modern compiler technology and its ability to effec-
tively use larger number of registers has led to an increase in register counts in
more recent architectures.

Two major instruction set characteristics divide GPR architectures. Both
characteristics concern the nature of operands for a typical arithmetic or logical
instruction (ALU instruction). The first concerns whether an ALU instruction has
two or three operands. In the three-operand format, the instruction contains one
result operand and two source operands. In the two-operand format, one of the
operands is both a source and a result for the operation. The second distinction
among GPR architectures concerns how many of the operands may be memory
addresses in ALU instructions. The number of memory operands supported by a
typical ALU instruction may vary from none to three. Figure B.3 shows combina-
tions of these two attributes with examples of computers. Although there are
seven possible combinations, three serve to classify nearly all existing computers.
As we mentioned earlier, these three are load-store (also called register-register),
register-memory, and memory-memory.

Figure B.4 shows the advantages and disadvantages of each of these alterna-
tives. Of course, these advantages and disadvantages are not absolutes: They are
qualitative and their actual impact depends on the compiler and implementation
strategy. A GPR computer with memory-memory operations could easily be
ignored by the compiler and used as a load-store computer. One of the most per-
vasive architectural impacts is on instruction encoding and the number of instruc-
tions needed to perform a task. We see the impact of these architectural
alternatives on implementation approaches in Appendix A and Chapter 2.

B-6 Appendix B Instruction Set Principles and Examples

Number of Maximum number
memory of operands
addresses allowed Type of architecture Examples
0 3 Load-store Alpha, ARM, MIPS, PowerPC, SPARC, SuperH,
TM32
1 2 Register-memory IBM 360/370, Intel 80x86, Motorola 68000,
TI TMS320C54x
Memory-memory VAX (also has three-operand formats)
Memory-memory VAX (also has two-operand formats)

Figure B.3 Typical combinations of memory operands and total operands per typical ALU instruction with
examples of computers. Computers with no memory reference per ALU instruction are called load-store or register-
register computers. Instructions with multiple memory operands per typical ALU instruction are called register-
memory or memory-memory, according to whether they have one or more than one memory operand.

Type Advantages Disadvantages

Register-register ~ Simple, fixed-length instruction encoding. Higher instruction count than architectures with

0, 3) Simple code generation model. Instructions memory references in instructions. More instructions
take similar numbers of clocks to execute and lower instruction density leads to larger
(see App. A). programs.

Register-memory Data can be accessed without a separate load Operands are not equivalent since a source operand in

(1,2) instruction first. Instruction format tends tobe a binary operation is destroyed. Encoding a register
easy to encode and yields good density. number and a memory address in each instruction

may restrict the number of registers. Clocks per
instruction vary by operand location.

Memory-memory Most compact. Doesn’t waste registers for ~ Large variation in instruction size, especially for

2,2)or(3,3) temporaries. three-operand instructions. In addition, large
variation in work per instruction. Memory accesses
create memory bottleneck. (Not used today.)

Figure B.4 Advantages and disadvantages of the three most common types of general-purpose register com-
puters. The notation (m, n) means m memory operands and n total operands. In general, computers with fewer alter-
natives simplify the compiler’s task since there are fewer decisions for the compiler to make (see Section B.8).
Computers with a wide variety of flexible instruction formats reduce the number of bits required to encode the pro-
gram.The number of registers also affects the instruction size since you need log, (number of registers) for each reg-
ister specifier in an instruction. Thus, doubling the number of registers takes 3 extra bits for a register-register
architecture, or about 10% of a 32-bit instruction.

Summary: Classifying Instruction Set Architectures

Here and at the end of Sections B.3 through B.8 we summarize those characteris-
tics we would expect to find in a new instruction set architecture, building the
foundation for the MIPS architecture introduced in Section B.9. From this sec-
tion we should clearly expect the use of general-purpose registers. Figure B.4.

B.3

B.3 Memory Addressing » B-7

combined with Appendix A on pipelining, leads to the expectation of a load-store
version of a general-purpose register architecture.
With the class of architecture covered, the next topic is addressing operands.

Memory Addressing

Independent of whether the architecture is load-store or allows any operand to be
a memory reference, it must define how memory addresses are interpreted and
how they are specified. The measurements presented here are largely, but not
completely, computer independent. In some cases the measurements are signifi-
cantly affected by the compiler technology. These measurements have been made
using an optimizing compiler, since compiler technology plays a critical role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a
function of the address and the length? All the instruction sets discussed in this
book are byte addressed and provide access for bytes (8 bits), half words (16
bits), and words (32 bits). Most of the computers also provide access for double
words (64 bits).

There are two different conventions for ordering the bytes within a larger
object. Little Endian byte order puts the byte whose address is “x ... x000” at
the least-significant position in the double word (the little end). The bytes are
numbered

7 6 5 4 3 2 1 0

Big Endian byte order puts the byte whose address is “x . .. x000” at the most-
significant position in the double word (the big end). The bytes are numbered

0 1 2 3 4 5 6 7

When operating within one computer, the byte order is often unnoticeable—
only programs that access the same locations as both, say, words and bytes can
notice the difference. Byte order is a problem when exchanging data among com-
puters with different orderings, however. Little Endian ordering also fails to
match normal ordering of words when strings are compared. Strings appear
“SDRAWKCAB" (backwards) in the registers.

A second memory issue is that in many computers, accesses to objects larger
than a byte must be aligned. An access to an object of size s bytes at byte address
A is aligned if A mod s = 0. Figure B.5 shows the addresses at which an access is
aligned or misaligned.

Why would someone design a computer with alignment restrictions? Mis-
alignment causes hardware complications, since the memory is typically aligned
on a multiple of a word or double-word boundary. A misaligned memory access

B-8 Appendix B Instruction Set Principles and Examples

Value of 3 low-order bits of byte address

Width of object 0 1 2 3 4 5 6 7

1 byte (byte) Aligned | Aligned | Aligned | Aligned | Aligned | Aligned | Aligned | Aligned
2 bytes (half word) Aligned Aligned Aligned Aligned

2 bytes (half word) Misaligned | Misaligned | Misaligned [Misaligned
4 bytes (word) Aligned ‘ Aligned

4 bytes (word) Misaligned { Misaligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned |Misaligned
8 bytes (double word) Aligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

Misaligned

Misaligned

Misaligned
Misaligned

8 bytes (double word)

8 bytes (double word)

8 bytes (double word)

8 bytes (double word)

8 bytes (double word)

Figure B.5 Aligned and misaligned addresses of byte, half-word, word, and double-word objects for byte-
addressed computers. For each misaligned example some objects require two memory accesses to complete. Every
aligned object can always complete in one memory access, as long as the memory is as wide as the object. The figure
shows the memory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order 3 bits of
the address.

may, therefore, take multiple aligned memory references. Thus, even in comput-
ers that allow misaligned access, programs with aligned accesses run faster.

Even if data are aligned, supporting byte, half-word, and word accesses
requires an alignment network to align bytes. half words, and words in 64-bit reg-
isters. For example, in Figure B.5, suppose we read a byte from an address with
its 3 low-order bits having the value 4. We will need to shift right 3 bytes to align
the byte to the proper place in a 64-bit register. Depending on the instruction, the
computer may also need to sign-extend the quantity. Stores are easy: Only the
addressed bytes in memory may be altered. On some computers a byte, half-
word, and word operation does not affect the upper portion of a register.
Although all the computers discussed in this book permit byte, half-word, and
word accesses to memory, only the IBM 360/370. Intel 80x86, and VAX support
ALU operations on register operands narrower than the full width.

Now that we have discussed alternative interpretations of memory addresses.
we can discuss the ways addresses are specified by instructions. called address-
ing modes.

B.3 Memory Addressing s B-9

Addressing Modes

Given an address, we now know what bytes to access in memory. In this sub-
section we will look at addressing modes—how architectures specify the address
of an object they will access. Addressing modes specify constants and registers in
addition to locations in memory. When a memory location is used, the actual
memory address specified by the addressing mode is called the effective address.

Figure B.6 shows all the data addressing modes that have been used in recent
computers. Immediates or literals are usually considered memory addressing

Addressing mode

Example instruction

Meaning

When used

Register Add R4,R3 Regs[R4] « Regs[R4] When a value is in a register.
+ Regs[R3]
Immediate Add R4,#3 Regs[R4] « Regs[R4] + 3 For constants.

Displacement

Add R4,100(R1)

Regs[R4] « Regs[R4]
+ Mem[100+Regs [R1]]

Accessing local variables
(+ simulates register indirect,
direct addressing modes).

Register indirect

Add R4, (R1)

Regs[R4] « Regs[R4]
+ Mem[Regs[R1]]

Accessing using a pointer or a
computed address.

Indexed Add R3, (R1+R2) Regs[R3] « Regs[R3] Sometimes useful in array
+ Mem[Regs [R1]+Regs[R2]] addressing: R1 = base of array;
R2 = index amount.
Direct or Add R1,(1001) Regs[R1] « Regs[R1] Sometimes useful for accessing
absolute + Mem[1001] static data; address constant may

need to be large.

Memory indirect

Add R1,@(R3)

Regs[R1] « Regs[R1]
+ Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer p,
then mode yields #p.

Autoincrement

Add R1,(R2)+

Regs[R1] « Regs[R1]
+ Mem[Regs[R2]]
Regs[R2] « Regs[R2] + d

Useful for stepping through arrays
within a loop. R2 points to start of
array; each reference increments
R2 by size of an element, d.

Autodecrement Add R1,-(R2) Regs[R2] « Regs[R2] - d Same use as autoincrement.
Regs[R1] « Regs[R1] Autodecrement/-increment can
+ Mem[Regs[R2]] also act as push/pop to implement
a stack.
Scaled Add R1,100(R2)[R3] Regs[R1] « Regs[R1] Used to index arrays. May be

+ Mem[100+Regs [R2]
+ Regs[R3]*d]

applied to any indexed addressing
mode in some computers.

Figure B.6 Selection of addressing modes with examples, meaning,

and usage. In autoincrement/-decrement

and scaled addressing modes, the variable d designates the size of the data item being accessed (i.e., whether the
instruction is accessing 1, 2, 4, or 8 bytes). These addressing modes are only useful when the elements being
accessed are adjacent in memory. RISC computers use displacement addressing to simulate register indirect with 0
for the address and to simulate direct addressing using 0 in the base register. In our measurements, we use the first
name shown for each mode. The extensions to C used as hardware descriptions are defined on page B-36.

B-10

Appendix B Instruction Set Principles and Examples

modes (even though the value they access is in the instruction stream), although
registers are often separated since they don’t normally have memory addresses.
We have kept addressing modes that depend on the program counter, called PC-
relative addressing, separate. PC-relative addressing is used primarily for speci-
fying code addresses in control transfer instructions, discussed in Section B.6.

Figure B.6 shows the most common names for the addressing modes, though
the names differ among architectures. In this figure and throughout the book, we
will use an extension of the C programming language as a hardware description
notation. In this figure, only one non-C feature is used: The left arrow (¢«) is used
for assignment. We also use the array Mem as the name for main memory and the
array Regs for registers. Thus, Mem[Regs [R1]] refers to the contents of the memory
location whose address is given by the contents of register 1 (R1). Later, we will
introduce extensions for accessing and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction counts;
they also add to the complexity of building a computer and may increase the
average CPI (clock cycles per instruction) of computers that implement those
modes. Thus, the usage of various addressing modes is quite important in helping
the architect choose what to include.

Figure B.7 shows the results of measuring addressing mode usage patterns in
three programs on the VAX architecture. We use the old VAX architecture for a
few measurements in this appendix because it has the richest set of addressing
modes and the fewest restrictions on memory addressing. For example, Figure
B.6 on page B-9 shows all the modes the VAX supports. Most measurements in
this appendix, however, will use the more recent register-register architectures to
show how programs use instruction sets of current computers.

As Figure B.7 shows, displacement and immediate addressing dominate
addressing mode usage. Let’s look at some properties of these two heavily used
modes.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is that of
the range of displacements used. Based on the use of various displacement sizes,
a decision of what sizes to support can be made. Choosing the displacement field
sizes is important because they directly affect the instruction length. Figure B.8
shows the measurements taken on the data access on a load-store architecture
using our benchmark programs. We look at branch offsets in Section B.6—data
accessing patterns and branches are different; little is gained by combining them,
although in practice the immediate sizes are made the same for simplicity.

Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves where a constant is wanted in a register. The last case
occurs for constants written in the code—which tend to be small—and for

B.3 Memory Addressing = B-11

TeX |
Memory indirect spice | 58 6%
gce

Scaled spice EE
gce

TeX
Register indirect spice

gcc
TeX

Immediate spice

gece

) TeX i
Displacement gpjce 8
gec

55%

0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

Figure B.7 Summary of use of memory addressing modes (including immediates).
These major addressing modes account for all but a few percent (0% to 3%) of the
memory accesses. Register modes, which are not counted, account for one-half of the
operand references, while memory addressing modes (including immediate) account
for the other half. Of course, the compiler affects what addressing modes are used; see
Section B.8. The memory indirect mode on the VAX can use displacement, autoincre-
ment, or autodecrement to form the initial memory address; in these programs, almost
all the memory indirect references use displacement mode as the base. Displacement
mode includes all displacement lengths (8, 16, and 32 bits). The PC-relative addressing
modes, used almost exclusively for branches, are not included. Only the addressing
modes with an average frequency of over 1% are shown.

address constants, which tend to be large. For the use of immediates it is impor-
tant to know whether they need to be supported for all operations or for only a
subset. Figure B.9 shows the frequency of immediates for the general classes of
integer and floating-point operations in an instruction set.

Another important instruction set measurement is the range of values for
immediates. Like displacement values, the size of immediate values affects
instruction length. As Figure B.10 shows, small immediate values are most
heavily used. Large immediates are sometimes used, however, most likely in
addressing calculations.

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to support
at least the following addressing modes: displacement, immediate, and register
indirect. Figure B.7 shows that they represent 75% to 99% of the addressing
modes used in our measurements. Second, we would expect the size of the
address for displacement mode to be at least 12-16 bits, since the caption in Fig-
ure B.8 suggests these sizes would capture 75% to 99% of the displacements.

B-12 Appendix B Instruction Set Principles and Examples

40%

35%
Integer average

30% ¢
25%

Percentage of
displacement 20%

Floating-point average

15%

10%

5%

0%

0 1 2 3 4 5 6 7 8 9 10 1M 12 13 14 15
Number of bits of displacement

Figure B.8 Displacement values are widely distributed. There are both a large number of small values and a fair
number of large values. The wide distribution of displacement values is due to multiple storage areas for variables
and different displacements to access them (see Section B.8) as well as the overall addressing scheme the compiler
uses. The x-axis is log, of the displacement; that is, the size of a field needed to represent the magnitude of the dis-
placement. Zero on the x-axis shows the percentage of displacements of vaiue 0. The graph does not include the
sign bit, which is heavily affected by the storage layout. Most displacements are positive, but a majority of the largest
displacements (14+ bits) are negative. Since these data were collected on a computer with 16-bit displacements,
they cannot tell us about longer displacements. These data were taken on the Alpha architecture with full optimiza-
tion (see Section B.8) for SPEC CPU2000, showing the average of integer programs (CINT2000) and the average of
floating-point programs (CFP2000).

B Floating-point average
W Integer average

Loads

ALU operations

Allinstructions §

0% 5% 10% 15% 20% 25% 30%

Figure B.9 About one-quarter of data transfers and ALU operations have an imme-
diate operand. The bottom bars show that integer programs use immediates in about
one-fifth of the instructions, while floating-point programs use immediates in about
one-sixth of the instructions. For loads, the load immediate instruction loads 16 bits
into either half of a 32-bit register. Load immediates are not loads in a strict sense
because they do not access memory. Occasionally a pair of load immediates is used to
load a 32-bit constant, but this is rare. (For ALU operations, shifts by a constant amount
are included as operations with immediate operands.) The programs and computer
used to collect these statistics are the same as in Figure B.8.

B.4 Type and Size of Operands = B-13

45% ¢

0% b

35°/o ee saciaacs . dresaiiaiasas sasan

Floating-point average
30% b
25% ,,,,, Crtncrredrerasaceaerean

Percentage of
immediates 20% @

Integer average
10% k- o! LN, SRR O

5% /o e e e

0% . s s L N N :
0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15

Number ot bits needed for immediate

Figure B.10 The distribution of immediate values. The x-axis shows the number of bits needed to represent the
magnitude of an immediate value—0 means the immediate field value was 0.The majority of the immediate values
are positive. About 20% were negative for CINT2000, and about 30% were negative for CFP2000. These measure-
ments were taken on an Alpha, where the maximum immediate is 16 bits, for the same programs as in Figure B.8. A
similar measurement on the VAX, which supported 32-bit immediates, showed that about 20% to 25% of immedi-
ates were longer than 16 bits. Thus, 16 bits would capture about 80% and 8 bits about 50%.

Third. we would expect the size of the immediate field to be at least 8-16 bits.
This claim is not substantiated by the captions of the figure to which it refers.

Having covered instruction set classes and decided on register-register archi-
tectures, plus the previous recommendations on data addressing modes, we next
cover the sizes and meanings of data.

‘B4 Type and Size of Operands

How is the type of an operand designated? Normally, encoding in the opcode
designates the type of an operand—this is the method used most often. Alterna-
tively, the data can be annotated with tags that are interpreted by the hardware.
These tags specify the type of the operand, and the operation is chosen accord-
ingly. Computers with tagged data, however, can only be found in computer
museums.

Let’s start with desktop and server architectures. Usually the type of an oper-
and—integer, single-precision floating point, character, and so on—effectively
gives its size. Common operand types include character (8 bits), half word (16
bits), word (32 bits), single-precision floating point (also 1 word), and double-
precision floating point (2 words). Integers are almost universally represented as

B-14

Appendix B Instruction Set Principles and Examples

B.5

two’s complement binary numbers. Characters are usually in ASCII, but the 16-
bit Unicode (used in Java) is gaining popularity with the internationalization of
computers. Until the early 1980s, most computer manufacturers chose their own
floating-point representation. Almost all computers since that time follow the
same standard for floating point, the IEEE standard 754. The IEEE floating-point
standard is discussed in detail in Appendix I.

Some architectures provide operations on character strings, although such
operations are usually quite limited and treat each byte in the string as a single
character. Typical operations supported on character strings are comparisons
and moves.

For business applications. some architectures support a decimal format,
usually called packed decimal or binary-coded decimal—4 bits are used to
encode the values 0-9, and 2 decimal digits are packed into each byte. Numeric
character strings are sometimes called unpacked decimal, and operations—
called packing and unpacking—are usually provided for converting back and
forth between them.

One reason to use decimal operands is to get results that exactly match deci-
mal numbers, as some decimal fractions do not have an exact representation in
binary. For example, 0.10;, is a simple fraction in decimal, but in binary it
requires an infinite set of repeating digits: 0.0001100110011. . . ,. Thus, calcula-
tions that are exact in decimal can be close but inexact in binary, which can be a
problem for financial transactions. (See Appendix I to learn more about precise
arithmetic.)

Our SPEC benchmarks use byte or character, half-word (short integer), word
(integer), double-word (long integer), and floating-point data types. Figure B.11
shows the dynamic distribution of the sizes of objects referenced from memory
for these programs. The frequency of access to different data types helps in
deciding what types are most important to support efficiently. Should the com-
puter have a 64-bit access path, or would taking two cycles to access a double
word be satisfactory? As we saw earlier, byte accesses require an alignment net-
work: How important is it to support bytes as primitives? Figure B.11 uses mem-
ory references to examine the types of data being accessed.

In some architectures, objects in registers may be accessed as bytes or half
words. However, such access is very infrequent—on the VAX, it accounts for no
more than 12% of register references, or roughly 6% of all operand accesses in
these programs.

Operations in the Instruction Set

The operators supported by most instruction set architectures can be categorized
as in Figure B.12. One rule of thumb across all architectures is that the most
widely executed instructions are the simple operations of an instruction set. For
example, Figure B.13 shows 10 simple instructions that account for 96% of

B.5 Operations in the Instruction Set = B-15

Double word |
{64 bits)

Word
(32 bits)

Half word | gog,
(16 bits) 5% M Fioating-point average
i £ Integer average
Byte] 1% g 9
{8 bits) 10%
0% 20% 40% 0% 80%

Figure B.11 Distribution of data accesses by size for the benchmark programs.The
double-word data type is used for double-precision floating point in floating-point pro-
grams and for addresses, since the computer uses 64-bit addresses.On a 32-bit address
computer the 64-bit addresses would be replaced by 32-bit addresses, and so almost all
double-word accesses in integer programs would become single-word accesses.

Operator type Examples

Arithmetic and logical Integer arithmetic and logical operations: add, subtract, and, or,
multiply, divide

Data transfer Loads-stores (move instructions on computers with memory
addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point Floating-point operations: add, multiply, divide, compare

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel and vertex operations, compression/decompression
operations

Figure B.12 Categories of instruction operators and examples of each. All comput-
ers generally provide a full set of operations for the first three categories. The support
for system functions in the instruction set varies widely among architectures, but all
computers must have some instruction support for basic system functions.The amount
of support in the instruction set for the last four categories may vary from none to an
extensive set of special instructions. Floating-point instructions will be provided in any
computer that is intended for use in an application that makes much use of floating
point.These instructions are sometimes part of an optional instruction set. Decimal and
string instructions are sometimes primitives, as in the VAX or the IBM 360, or may be
synthesized by the compiler from simpler instructions. Graphics instructions typically
operate on many smaller data items in parallel, for example, performing eight 8-bit
additions on two 64-bit operands.

B-16 Appendix B [Instruction Ser Principles and Examples

B.6

Integer average

Rank 80x86 instruction (% total executed)
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%
Total 96%

Figure B.13 The top 10 instructions for the 80x86. Simple instructions dominate this
list and are responsible for 96% of the instructions executed. These percentages are the
average of the five SPECint92 programs.

instructions executed for a collection of integer programs running on the popular
Intel 80x86. Hence, the implementor of these instructions should be sure to make
these fast, as they are the common case.

As mentioned before, the instructions in Figure B.13 are found in every com-
puter for every application—desktop, server, embedded—with the variations of
operations in Figure B.12 largely depending on which data types that the instruc-
tion set includes.

Instructions for Control Flow

Because the measurements of branch and jump behavior are fairly independent of
other measurements and applications, we now examine the use of control flow
instructions, which have little in common with the operations of the previous
sections.

There is no consistent terminology for instructions that change the flow of
control. In the 1950s they were typically called transfers. Beginning in 1960 the
name branch began to be used. Later, computers introduced additional names.
Throughout this book we will use jump when the change in control is uncondi-
tional and branch when the change is conditional.

We can distinguish four different types of control flow change:

s Conditional branches

a Jumps

B.6 Instructions for Control Flow - B-17

B Floating-point average

Callireturn 19% W integer average
Jump
i R 82%
Conditional branch 75%
0% 25% 50% 75% 100%

Frequency of branch instructions

Figure B.14 Breakdown of control flow instructions into three classes: calls or
returns, jumps, and conditional branches. Conditional branches clearly dominate.
Each type is counted in one of three bars. The programs and computer used to collect
these statistics are the same as those in Figure B.8.

s Procedure calls

m Procedure returns

We want to know the relative frequency of these events, as each event is different,
may use different instructions, and may have different behavior. Figure B.14
shows the frequencies of these control flow instructions for a load-store computer
running our benchmarks.

Addressing Modes for Control Flow Instructions

The destination address of a control flow instruction must always be specified.
This destination is specified explicitly in the instruction in the vast majority of
cases—procedure return being the major exception, since for return the target
is not known at compile time. The most common way to specify the destination
is to supply a displacement that is added to the program counter (PC). Control
flow instructions of this sort are called PC-relative. PC-relative branches or
jumps are advantageous because the target is often near the current instruction,
and specifying the position relative to the current PC requires fewer bits. Using
PC-relative addressing also permits the code to run independently of where it is
loaded. This property, called position independence, can eliminate some work
when the program is linked and is also useful in programs linked dynamically
during execution.

To implement returns and indirect jumps when the target is not known at
compile time, a method other than PC-relative addressing is required. Here, there
must be a way to specify the target dynamically, so that it can change at run time.
This dynamic address may be as simple as naming a register that contains the tar-
get address; alternatively, the jump may permit any addressing mode to be used
to supply the target address.

B-18 Appendix B Instruction Set Principles and Examples

These register indirect jumps are also useful for four other important features:

m Case or switch statements, found in most programming languages (which
select among one of several alternatives)

m Virtual functions or methods in object-oriented languages like C++ or Java
(which allow different routines to be called depending on the type of the
argument)

m High-order functions or function pointers in languages like C or C++ (which
allow functions to be passed as arguments, giving some of the flavor of
object-oriented programming)

m Dynamically shared libraries (which allow a library to be loaded and linked
at run time only when it is actually invoked by the program rather than loaded
and linked statically before the program is run)

In all four cases the target address is not known at compile time, and hence is
usually loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targets, an
important question concerns how far branch targets are from branches. Knowing
the distribution of these displacements will help in choosing what branch offsets
to support, and thus will affect the instruction length and encoding. Figure B.15
shows the distribution of displacements for PC-relative branches in instructions.
About 75% of the branches are in the forward direction.

30% ey
25% T . 1 . —— e eeetatiaeeieeeiieieiranieaiee
ZOOA’ e T N .
integer
Percentage o L average
ofdistance ‘5/° .. e —— R e xR
Floating-point average
10% ARRRREALTRY ALTIEEEEIITTRTILTS CUPRRTPRIPTIES ESTITIIITS PO . . e
5°/° R T
0% " L N . P : R . N

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bits of branch displacement

Figure B.15 Branch distances in terms of number of instructions between the target and the branch instruction.
The most frequent branches in the integer programs are to targets that can be encoded in 4-8 bits. This result tells us
that short displacement fields often suffice for branches and that the designer can gain some encoding density by
having a shorter instruction with a smaller branch displacement. These measurements were taken on a load-store
computer (Alpha architecture) with all instructions aligned on word boundaries. An architecture that requires fewer
instructions for the same program, such as a VAX, would have shorter branch distances. However, the number of bits
needed for the displacement may increase if the computer has variable-length instructions to be aligned on any byte
boundary.The programs and computer used to coliect these statistics are the same as those in Figure B.8.

B.6 Instructions for Control Flow = B-19

Conditional Branch Options

Since most changes in control flow are branches, deciding how to specify the
branch condition is important. Figure B.16 shows the three primary techniques in
use today and their advantages and disadvantages.

One of the most noticeable properties of branches is that a large number of
the comparisons are simple tests, and a large number are comparisons with zero.
Thus, some architectures choose to treat these comparisons as special cases,
especially if a compare and branch instruction is being used. Figure B.17 shows
the frequency of different comparisons used for conditional branching.

Procedure Invocation Options

Procedure calls and returns include control transfer and possibly some state sav-
ing; at a minimum the return address must be saved somewhere, sometimes in a
special link register or just a GPR. Some older architectures provide a mecha-
nism to save many registers, while newer architectures require the compiler to
generate stores and loads for each register saved and restored.

There are two basic conventions in use to save registers: either at the call site
or inside the procedure being called. Caller saving means that the calling proce-
dure must save the registers that it wants preserved for access after the call, and
thus the called procedure need not worry about registers. Callee saving is the
opposite: the called procedure must save the registers it wants to use, leaving the
caller unrestrained.There are times when caller save must be used because of

Name Examples How condition is tested Advantages Disadvantages

Condition 80x86, ARM, Tests special bits set by Sometimes condition CC is extra state. Condition

code (CC) PowerPC. ALU operations. possibly is set for free. codes constrain the ordering of

SPARC, SuperH under program control. instructions since they pass

information from one instruction
to a branch.

Condition Alpha, MIPS Tests arbitrary register Simple. Uses up a register.

register with the result of a

comparison.
Compare PA-RISC. VAX Compare is part of the One instruction rather May be too much work per

and branch

branch. Often compare is than two for a branch. instruction for pipelined
limited to subset. execution.

Figure B.16 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on pro-
grams show that this rarely happens.The major implementation problems with condition codes arise when the con-
dition code is set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in
the instruction. Computers with compare and branch often limit the set of compares and use a condition register for
more complex compares. Often, different techniques are used for branches based on floating-point comparison ver-
sus those based on integer comparison. This dichotomy is reasonable since the number of branches that depend on
floating-point comparisons is much smaller than the number depending on integer comparisons.

B-20 Appendix B Instruction Set Principles and Examples

5%

Not eguat
B Floating-point average

B Integer average

Equal |
Greater than or equal

Greater than

c 44%
Less than or equai

34%
35%

Less than

0% 10% 20% 30% 40% 50%

Frequency of comparison types in branches

Figure B.17 Frequency of different types of compares in conditional branches. Less
than (or equal) branches dominate this combination of compiler and architecture.
These measurements include both the integer and floating-point compares in
branches. The programs and computer used to collect these statistics are the same as
those in Figure B.8.

access patterns to globally visible variables in two different procedures. For
example, suppose we have a procedure P1 that calls procedure P2, and both pro-
cedures manipulate the global variable x. If P1 had allocated x to a register, it
must be sure to save x to a location known by P2 before the call to P2. A com-
piler’s ability to discover when a called procedure may access register-allocated
quantities is complicated by the possibility of separate compilation. Suppose P2
may not touch x but can call another procedure, P3, that may access x, yet P2 and
P3 are compiled separately. Because of these complications, most compilers will
conservatively caller save any variable that may be accessed during a call.

In the cases where either convention could be used, some programs will be
more optimal with callee save and some will be more optimal with caller save. As
a result, most real systems today use a combination of the two mechanisms. This
convention is specified in an application binary interface (ABI) that sets down the
basic rules as to which registers should be caller saved and which should be
callee saved. Later in this appendix we will examine the mismatch between
sophisticated instructions for automatically saving registers and the needs of the
compiler.

Summary: Instructions for Control Flow

Control flow instructions are some of the most frequently executed instructions.
Although there are many options for conditional branches, we would expect

B.7 Encoding an Instruction Set = B-21

branch addressing in a new architecture to be able to jump to hundreds of instruc-
tions either above or below the branch. This requirement suggests a PC-relative
branch displacement of at least 8 bits. We would also expect to see register indi-
rect and PC-relative addressing for jump instructions to support returns as well as
many other features of current systems.

We have now comipleted our instruction architecture tour at the level seen by
an assembly language programmer or compiler writer. We are leaning toward a
load-store architecture with displacement, immediate, and register indirect
addressing modes. These data are 8-, 16-, 32-, and 64-bit integers and 32- and 64-
bit floating-point data. The instructions include simple operations, PC-relative
conditional branches, jump and link instructions for procedure call, and register
indirect jumps for procedure return (plus a few other uses).

Now we need to select how to represent this architecture in a form that makes
it easy for the hardware to execute.

Encoding an Instruction Set

Clearly, the choices mentioned above will affect how the instructions are encoded
into a binary representation for execution by the processor. This representation
affects not only the size of the compiled program; it affects the implementation of
the processor, which must decode this representation to quickly find the operation
and its operands. The operation is typically specified in one field, called the
opcode. As we shall see, the important decision is how to encode the addressing
modes with the operations.

This decision depends on the range of addressing modes and the degree of
independence between opcodes and modes. Some older computers have one to
five operands with 10 addressing modes for each operand (see Figure B.6). For
such a large number of combinations, typically a separate address specifier is
needed for each operand: The address specifier tells what addressing mode is
used to access the operand. At the other extreme are load-store computers with
only one memory operand and only one or two addressing modes; obviously, in
this case, the addressing mode can be encoded as part of the opcode.

When encoding the instructions, the number of registers and the number of
addressing modes both have a significant impact on the size of instructions, as the
register field and addressing mode field may appear many times in a single
instruction. In fact, for most instructions many more bits are consumed in encod-
ing addressing modes and register fields than in specifying the opcode. The archi-
tect must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the aver-
age instruction size and hence on the average program size.

3. A desire to have instructions encoded into lengths that will be easy to handle
in a pipelined implementation. (The value of easily decoded instructions is

B-22

Appendix B Instruction Set Principles and Examples

discussed in Appendix A and Chapter 2.) As a minimum, the architect wants
instructions to be in multiples of bytes, rather than an arbitrary bit length.
Many desktop and server architects have chosen to use a fixed-length instruc-
tion to gain implementation benefits while sacrificing average code size.

Figure B.18 shows three popular choices for encoding the instruction set. The
first we call variable, since it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera-
tions. The second choice we call fixed, since it combines the operation and the
addressing mode into the opcode. Often fixed encoding will have only a single
size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size of
programs versus ease of decoding in the processor. Variable tries to use as few
bits as possible to represent the program, but individual instructions can vary
widely in both size and the amount of work to be performed.

Let’s lock at an 80x86 instruction to see an example of the variable encoding:

add EAX, 1000 (EBX)

Operation and | Address Address Address Address
no. of operands | specifier 1 field 1 specifier n field n

(a) Variabie (e.g., intel 80x86, VAX)

Operation Address Address Address
field 1 field 2 field 3

(b) Fixed {e.g., Alpha, ARM, MIPS, PowerPC, SPARC, Superh)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/370, MIPS16, Thumb, TI TMS320C54x)

Figure B.18 Three basic variations in instruction encoding: variable length, fixed
length, and hybrid. The variable format can support any number of operands, with
each address specifier determining the addressing mode and the length of the specifier
for that operand. It generally enables the smallest code representation, since unused
fields need not be included.The fixed format always has the same number of operands,
with the addressing modes (if options exist) specified as part of the opcode. It generally
results in the largest code size. Although the fields tend not to vary in their location,
they will be used for different purposes by different instructions. The hybrid approach
has multiple formats specified by the opcode, adding one or two fields to specify the
addressing mode and one or two fields to specify the operand address.

B.7 Encoding an Instruction Set s B-23

The name add means a 32-bit integer add instruction with two operands, and this
opcode takes 1 byte. An 80x86 address specifier is 1 or 2 bytes, specifying the
source/destination register (EAX) and the addressing mode (displacement in this
case) and base register (EBX) for the second operand. This combination takes 1
byte to specify the operands. When in 32-bit mode (see Appendix J), the size of
the address field is either 1 byte or 4 bytes. Since 1000 is bigger than 28, the total
length of the instruction is

1+ 1+4=06bytes

The length of 80x86 instructions varies between 1 and 17 bytes. 80x86 programs
are generally smaller than the RISC architectures, which use fixed formats (see
Appendix J).

Given these two poles of instruction set design of variable and fixed, the third
alternative immediately springs to mind: Reduce the variability in size and work
of the variable architecture but provide multiple instruction lengths to reduce
code size. This hybrid approach is the third encoding alternative, and we’ll see
examples shortly.

Reduced Code Size in RISCs

As RISC computers started being used in embedded applications, the 32-bit fixed
format became a liability since cost and hence smaller code are important. In
response, several manufacturers offered a new hybrid version of their RISC
instruction sets, with both 16-bit and 32-bit instructions. The narrow instructions
support fewer operations, smaller address and immediate fields, fewer registers,
and two-address format rather than the classic three-address format of RISC
computers. Appendix J gives two examples, the ARM Thumb and MIPS
MIPS16, which both claim a code size reduction of up to 40%.

In contrast to these instruction set extensions, IBM simply compresses its
standard instruction set, and then adds hardware to decompress instructions as
they are fetched from memory on an instruction cache miss. Thus, the instruction
cache contains full 32-bit instructions, but compressed code is kept in main mem-
ory, ROMs, and the disk. The advantage of MIPS16 and Thumb is that instruction
caches act as if they are about 25% larger, while IBM’s CodePack means that
compilers need not be changed to handle different instruction sets and instruction
decoding can remain simple.

CodePack starts with run-length encoding compression on any PowerPC pro-
gram, and then loads the resulting compression tables in a 2 KB table on chip.
Hence, every program has its own unique encoding. To handle branches, which
are no longer to an aligned word boundary, the PowerPC creates a hash table in
memory that maps between compressed and uncompressed addresses. Like a
TLB (see Chapter 5), it caches the most recently used address maps to reduce the
number of memory accesses. IBM claims an overall performance cost of 10%,
resulting in a code size reduction of 35% to 40%.

Hitachi simply invented a RISC instruction set with a fixed 16-bit format,
called SuperH, for embedded applications (see Appendix J). It has 16 rather than

B-24

Appendix B Instruction Set Principles and Examples

B.8

32 registers to make it fit the narrower format and fewer instructions, but other-
wise looks like a classic RISC architecture.

Summary: Encoding an Instruction Set

Decisions made in the components of instruction set design discussed in previous
sections determine whether the architect has the choice between variable and fixed
instruction encodings. Given the choice, the architect more interested in code size
than performance will pick variable encoding, and the one more interested in per-
formance than code size will pick fixed encoding. Appendix D gives 13 examples
of the results of architects’ choices. In Appendix A and Chapter 2, the impact of
variability on performance of the processor will be discussed further.

We have almost finished laying the groundwork for the MIPS instruction set
architecture that will be introduced in Section B.9. Before we do that, however, it
will be helpful to take a brief look at compiler technology and its effect on pro-
gram properties.

Crosscutting issues: The Role of Compilers

Today almost all programming is done in high-level languages for desktop and
server applications. This development means that since most instructions exe-
cuted are the output of a compiler, an instruction set architecture is essentially a
compiler target. In earlier times for these applications, architectural decisions
were often made to ease assembly language programming or for a specific kernel.
Because the compiler will significantly affect the performance of a computer,
understanding compiler technology today is critical to designing and efficiently
implementing an instruction set.

Once it was popular to try to isolate the compiler technology and its effect on
hardware performance from the architecture and its performance, just as it was
popular to try to separate architecture from its implementation. This separation is
essentially impossible with today’s desktop compilers and computers. Architec-
tural choices affect the quality of the code that can be generated for a computer
and the complexity of building a good compiler for it, for better or for worse.

In this section, we discuss the critical goals in the instruction set primarily
from the compiler viewpoint. It starts with a review of the anatomy of current
compilers. Next we discuss how compiler technology affects the decisions of the
architect, and how the architect can make it hard or easy for the compiler to pro-
duce good code. We conclude with a review of compilers and multimedia opera-
tions, which unfortunately is a bad example of cooperation between compiler
writers and architects.

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. Figure B.19
shows the structure of recent compilers.

B.8 Crosscutting Issues: The Role of Compilers » B-25

Dependencies Function

Language dependent: Transform language to
machine independent common intermediate form

Front end per
ianguage

intermediate
representation
Somewhat language dependent: High-leve! For example, loop
largely machine independent igh-ieve transformations and
optimizations

procedure inlining
{also called
procedure integration)

Small language dependencies; Including globat and local
machine dependencies stight Giobal optimizations + register
(e.g.. register counts/types} optimizer allocation

:

Highly machine dependent: r Detailed instruction selection
language independent Code generator and machine-dependent
optimizations; may include

or be tollowed by assembler

Figure B.19 Compilers typically consist of two to four passes, with more highly opti-
mizing compilers having more passes. This structure maximizes the prebability that a
program compiled at various levels of optimization will produce the same output when
given the same input. The optimizing passes are designed to be optional and may be
skipped when faster compilation is the goal and lower-quality code is acceptable. A
pass is simply one phase in which the compiler reads and transforms the entire pro-
gram. (The term phase is often used interchangeably with pass.) Because the optimiz-
ing passes are separated, multiple languages can use the same optimizing and code
generation passes.Only a new fron. end is required for a new language.

A compiler writer’s first goal is correctness—all valid programs must be
compiled correctly. The second goal is usually speed of the compiled code. Typi-
cally, a whole set of other goals follows these two, including fast compilation,
debugging support, and interoperability among languages. Normally, the passes
in the compiler transform higher-level. more abstract representations into pro-
gressively lower-level represemtations. Eventually it reaches the instruction set.
This structure helps manage the complexity of the transformations and makes
writing a bug-free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order and
perform some transformations before others. In the diagram of the optimizing
compiler in Figure B.19, we can see that certain high-level optimizations are per-
formed long before it is known what the resulting code will look like. Once such
a transformation is made, the compiler can’t afford to go back and revisit all
steps. possibly undoing transformations. Such iteration would be prohibitive,
both in compilation time and in complexity. Thus, compilers make assumptions
about the ability of later steps to deal with certain problems. For example, com-
pilers usually have to choose which procedure calls to expand inline before they

B-26

Appendix B Instruction Se’ Principles and Examples

know the exact size of the procedure being called. Compiler writers call this
problem the phase-ordering problem.

How does this ordering of transformations interact with the instruction set
architecturc? A good example occurs with the optimization called global com-
mon subexpression elimination. This optimization finds two instances of an
expression that compute the same value and saves the value of the first computa-
tion in a temporary. It then uses the temporary value, eliminating the second com-
putation of the common expression.

For this optimization to be significant, the temporary must be allocated to a
register. Otherwise, the cost of storing the temporary in memory and later reload-
ing it may negate the savings gained by not recomputing the expression. There
are, in fact. cases where this optimization actually slows down code when the
temporary is not register allocated. Phase ordering complicates this problem
because register allocation is typically done near the end of the global optimiza-
tion pass, just before code generation. Thus, an optimizer that performs this opti-
mization must assume that the register allocator will allocate the temporary to a
register.

Optimirations performed by modern compilers can be classified by the style
of the transformation, as follows:

m High-level optimizations are often done on the source with output fed to later
optimization passes.

m Local optimizations optimize code only within a straight-line code fragment
(called a basic block by compiler people).

m Global optimizations extend the local optimizations across branches and
introduce a set of transformations aimed at optimizing loops.

® Register allocation associates registers with operands.

m Processor-dependent optimizations attempt to take advantage of specific
architectural knowledge.

Register Allocation

Because of the central role that register allocation plays, both in speeding up the
code and in making other optimizations useful, it is one of the most important—
if not the most important—of the optimizations. Register allocation algorithms
today are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates for
allocation to a register and then to use the graph to allocate registers. Roughly
speaking, the problem is how to use a limited set of colors so that no two adjacent
nodes in a dependency graph have the same color. The emphasis in the approach
is to achieve 100% register allocation of active variables. The problem of color-
ing a graph in general can take exponential time as a function of the size of the
graph (NP-complete). There are heuristic algorithms, however, that work well in
practice, yielding close allocations that run in near-linear time.

B.& Crosscutting Issues: The Role of Compilers s B-27

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables and
additional registers for floating point. Unfortunately, graph coloring does not
work very well when the number of registers is small because the heuristic algo-
rithms for coloring the graph are likely to fail.

Impact of Optimizations on Performance

It is sometimes difficult to separate some cf the simpler optimizations—Ilocal and
processor-dependent optimizations—from transformations done in the code gen-
erator. Examples of typical optimizations are given in Figure B.20. The last col-
umn of Figure B.20 indicates the frequency with which the listed optimizing
transforms were applied to the source program.

Figure B.21 shows the effect of various optimizations on instructions exe-
cuted for two programs. In this case, optirized programs executed roughly 25%
to 90% fewer instructions than unoptimized programs. The figure illustrates the
importance of looking at optimized code before suggesting new instruction set
features, since a compiler might completely remove the instructions the architect
was trying to improve.

The Impact of Compiler Technology on the Architect’s
Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set architecture. There are two important questions:
How are variables allocated and addressed? How many registers are needed to
allocate variables appropriately? To address these questions, we must look at the
three separate areas in which current high-level languages allocate their data:

m The stack is used to allocate local variables. The stack is grown or shrunk on
procedure call or return, respectively. Objects on the stack are addressed rela-
tive to the stack pointer and are primarily scalars (single variables) rather than
arrays. The stack is used for activation records, not as a stack for evaluating
expressions. Hence, values are almost never pushed or popped on the stack.

m The global data area is used to allocate statically declared objects, such as
global variables and constants. A large percentage of these objects are arrays
or other aggregate data structures.

m The heap is used to allocate dynamic objects that do not adhere to a stack dis-
cipline. Objects in the heap are accessed with pointers and are typically not
scalars.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap-
allocated objects because they are accessed with pointers. Global variables and
some stack variables are impossible to allocate because they are aliased—there

B-28 Appendix B Instruction Sei Principles and Examples

Optimization name

Explanation

Percentage of the total number of
optimizing transforms

High-level At or near the source level; processor-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression Replace two instances of the same 18%

elimination computation by single copy

Constant propagation Replace all instances of a variable that 22%
is assigned a constant with the constant

Stack height reduction Rearrange expression tree to minimize N.M.
resources needed for expression evaluation

Global Across a branch

Global common subexpression Same as local, but this version crosses 13%

elimination branches

Copy propagation Replace all instances of a variable A that has 11%
been assigned X (i.e., A = X) with X

Code motion Remove code from a loop that computes 16%
same value cach iteration ot the loop

Induction variable elimination Simplify/eliminate array addressing 2%
calcuiations within loops

Processor-dependent Depends on processor knowledge

Strength reduction Many examples, such as replace multiply by N.M.
a constant with adds and shifts

Pipeline scheduling Reorder instructions to improve pipeline N.M.
performance

Branch offset optimization Choose the shortest branch displacement that N.M.

reaches target

Figure B.20 Major types of optimizations and examples in each class. These data tell us about the relative fre-
quency of occurrence of various optimizations. The third column lists the static frequency with which some of the
common optimizations are applied in a set of 12 small FORTRAN and Pascal programs. There are nine local and glo-
bal optimizations done by the compiler included in the measurement. Six of these optimizations are covered in the
figure, and the remaining three account for 18% of the total static occurrences. The abbreviation N.M. means that
the number of occurrences of that optimization was not measured. Processor-dependent optimizations are usually
done in a code generator, and none of those was measured in this experiment. The percentage is the portion of the
static optimizations that are of the specified type. Data from Chow [1983] (collected using the Stanford UCODE

compiler).

are multiple ways to refer to the address of a variable, making it illegal to put it
into a register. (Most heap variables are effectively aliased for today’s compiler
technology.)

For example, consider the following code sequence, where & returns the

address of a variable and * dereferences a pointer:

B.8 Crosscutting Issucs: The Role of Compilers « B-29

[Branches/calls

[J Floating-point ALU ops
W Loads-stores

B Integer ALU ops

lucas, level 3 1%

lucas, level 2

lucas, level 1
Program,
compiler lucas, level 0 100%
optimization
level mcf, level 3 76%

mcf, level 2

mcf, level 1
mcf, level 0 100%

o6 20% 4% 80% 80% 100%
Percentage of unoptimized instructions executed

Figure B.21 Change in instruction count for the programs lucas and mcf from the
SPEC2000 as compiler optimization levels vary. Level 0 is the same as unoptimized
code. Level 1 includes loca! optimizations, code scheduling, and local register alloca-
tion. Level 2 includes global optimizations, loop transformations (software pipelining),
and global register allocation. Level 3 adds procedure integration. These experiments
were performed on the Alpha compilers.

p = &a -- gets address of a in p
a= ... -- assigns to a directly
*xp = ... -- uses p to assign to a
R PR -- accesses a

The variable a could not be register allocared across the assignment to *p without
generating incorrect code. Aliasing causes a substantial problem because it is
often difficult or impossible to decide what objects a pointer may refer to. A
compiler must be conservative; some compilers will not allocate any local vari-
ables of a procedure in a register when there is a pointer that may refer to one of
the local variables.

How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple state-
ments like A = B + C. Most programs are locally simple, and simple translations
work fine. Rather, complexity arises because programs are large and globally
complex in their interactions, and because the structure of compilers means deci-
sions are made one step at a time about which code sequence is best.

Compiler writers often are working under their own corollary of a basic prin-
ciple in architecture: Make the frequent cases fast and the rare case correct. That
is. if we know which cases are frequent and which are rare, and if generating

B-30

Appendix B Instruction Set Principles and Examples

code for bath is straightforward, then the quality of the code for the rare case may
not be very important—but it must be correct!

Some instruction set properties help the compiler writer. These properties

should not be thought of as hard-and-fast rules, but rather as guidelines that will
make it easier to write a compiler that will generate efficient and correct code.

® Provide regularity—Whenever it makes sense, the three primary components

of an instruction set—the operations, the data types, and the addressing
modes-—should be orthogonal. Two aspects of an architecture are said to be
orthogenal if they are independent. For example, the operations and address-
ing modes are orthogonal if, for every operation to which one addressing
mode can be applied, all addressing modes are applicable. This regularity
helps simplify code generation and is particularly important when the deci-
sion about what code to generate is split into two passes in the compiler. A
good counterexample of this property is restricting what registers can be used
for a certain class of instructions. Compilers for special-purpose register
architectures typically get stuck in this dilemma. This restriction can result in
the compiler finding itself with lots of available registers, but none of the
right kind!

Provide primitives, not solutions—Special features that “match” a language
construct or a kernel function are often unusable. Attempts to support high-
level languages may work only with one language, or do more or less than is
required for a correct and efficient implementation of the language. An exam-
ple of how such attempts have failed is given in Section B.10.

Simplify trade-offs among alternatives—One of the toughest jobs a compiler
writer has is figuring out what instruction sequence will be best for every seg-
ment of code that arises. In earlier days, instruction counts or total code size
might have been good metrics, but—as we saw in Chapter 1—this is no
longer true. With caches and pipelining, the trade-offs have become very
complex. Anything the designer can do to help the compiler writer under-
stand the costs of alternative code sequences would help improve the code.
One of the most difficult instances of complex trade-offs occurs in a register-
memory architecture in deciding how many times a variable should be ref-
erenced before it is cheaper to load it into a register. This threshold is hard to
compute and, in fact, may vary among models of the same architecture.

Provide instructions that bind the quantities known at compile time as con-
stants—A compiler writer hates the thought of the processor interpreting at
run time a value that was known at compile time. Good counterexamples of
this principle include instructions that interpret values that were fixed at com-
pile time. For instance, the VAX procedure call instruction (calls) dynami-
cally interprets a mask saying what registers to save on a call, but the mask is
fixed at compile time (see Section B.10).

B.& Crosscutting Issues: The Role of Compilers B-31

Compiler Support (or Lack Thereof) for Multimedia
Instructions

Alas, the designers of the SIMD instructions that operate on several narrow data
items in a single clock cycle consciously ignored the previous subsection. These
instructions tend to be solutions, not primitives; they are short of registers; and
the data types do not match existing programming languages. Architects hoped to
find an inexpensive solution that would help some users, but in reality, only a few
low-level graphics library routines use them.

The SIMD instructions are really an abbreviated version of an elegant architec-
ture style that has its own compiler technology. As explained in Appendix F, vector
architectures operate on vectors of data. Invented originally for scientific codes,
multimedia kernels are often vectorizable as well, albeit often with shorter vectors.
Hence, we can think of Intel’'s MMX and SSE or PowerPC’s AltiVec as simply
short vector computers: MMX with vectors of eight 8-bit elements, four 16-bit ele-
ments, or two 32-bit elements, and AltiVec with vectors twice that length. They are
implemented as simply adjacent. narrow elements in wide registers.

These microprocessor architectures build the vector register size into the
architecture: the sum of the sizes of the elements is limited to 64 bits for MMX
and 128 bits for AltiVec. When Intel decided to expand to 128-bit vectors, it
added a whole new set of instructions, called Streaming SIMD Extension (SSE).

A major advantage of vector computers is hiding latency of memory access
by loading many elements at once and then overlapping execution with data
transfer. The goal of vector addressing modes is to collect data scattered about
memory, place them in a compact form so that they can be operated on effi-
ciently, and then place the results back where they belong.

Over the years traditional vector computers added strided addressing and
gather/scatter addressing to increase the number of programs that can be vector-
ized. Strided addressing skips a fixed number of words between each access, so
sequential addressing is often called unir stride addressing. Gather and scatter
find their addresses in another vector register: Think of it as register indirect
addressing for vector computers. From a vector perspective, in contrast, these
short-vector SIMD computers support only unit strided accesses: Memory
accesses load or store all elements at once from a single wide memory location.
Since the data for multimedia applications are often streams that start and end in
memory, strided and gather/scatter addressing modes are essential to successful
vectorization.

Example

As an example, compare a vector computer to MMX for color representation
conversion of pixels from RGB (red green blue) to YUV (luminosity chromi-
nance), with each pixel represented by 3 bytes. The conversion is just three lines
of C code placed in a loop:

Y = (9798*R + 19235*G + 3736*B)/ 32768;
U = (-4784*R - 9437*G + 4221*B)/ 32768 + 128;
V = (20218*R - 16941*G - 3277*B)/ 32768 + 128;

B-32

Appendix B Instruction Set Principles and Examples

B.9

A 64-bit-wide vector computer can calculate 8 pixels simultaneously. One vector
computer for media with strided addresses takes

= 3 vector loads (to get RGB)

m 3 vector multiplies (to convert R)

m 6 vector multiply adds (to convert G and B)
= 3 vector shifts (to divide by 32,768)

m 2 vector adds (to add 128)

= 3 vector stores (to store YUV)

The total is 20 instructions to perform the 20 operations in the previous C code to
convert 8 pixels [Kozyrakis 2000]. (Since a vector might have 32 64-bit elements.
this code actually converts up to 32 x 8 or 256 pixels.)

In contrast, Intel’s Web site shows that a library routine to perform the same
calculation on 8 pixels takes 116 MMX instructions plus 6 80x86 instructions
[Intel 2001]. This sixfold increase in instructions is due to the large number of
instructions to load and unpack RGB pixels and to pack and store YUV pixels.
since there are no strided memory accesses.

Having short, architecture-limited vectors with few registers and simple
memory addressing modes makes it more difficult to use vectorizing compiler
technology. Another challenge is that no programming language (yet) has support
for operations on these narrow data. Hence, these SIMD instructions are likely to
be found in hand-coded libraries than in compiled code.

Summary:The Role of Compilers

This section leads to several recommendations. First, we expect a new instruction
set architecture to have at least 16 general-purpose registers-—not counting sepa-
rate registers for floating-point numbers—to simplify allocation of registers using
graph coloring. The advice on orthogonality suggests that all supported address-
ing modes apply to all instructions that transfer data. Finally. the last three pieces
of advice—provide primitives instead of solutions, simplify trade-offs between
alternatives, don’t bind constants at run time—all suggest that it is better to err on
the side of simplicity. In other words, understand that less is more in the design of
an instruction set. Alas, SIMD extensions are more an example of good market-
ing than of outstanding achievement of hardware-software co-design.

Putting It All Together: The MIPS Architecture

In this section we describe a simple 64-bit load-store architecture called MIPS.
The instruction set architecture of MIPS and RISC relatives was based on obser-

B.9 Putting It All Together: The MIPS Architecture - B-33

vations similar to those covered in the last sections. (In Section K.3 we discuss
how and why these architectures became popular.) Reviewing our expectations
from each section, for desktop applications:

w Section B.2—Use general-purpose registers with a load-store architecture.

w Section B.3—Support these addressing modes: displacement (with an address
offset size of 12—16 bits), immediate (size 8~16 bits), and register indirect.

m Section B.4—Support these data sizes and types: 8-, 16-, 32-, and 64-bit inte-
gers and 64-bit IEEE 754 floating-point numbers.

s Section B.5—Support these simple instructions, since they will dominate the
number of instructions executed: load, store, add, subtract, move register-
register, and shift.

m Section B.6-—Compare equal, compare not equal, compare less, branch (with
a PC-relative address at least 8 bits long), jump, call, and return.

m Section B.7—Use fixed instruction encoding if interested in performance, and
use variable instruction encoding if interested in code size.

w Section B.8—Provide at least 16 general-purpose registers, be sure all
addressing modes apply to all data transfer instructions, and aim for a mini-
malist instruction set. This section didn't cover floating-point programs, but
they often use separate floating-point registers. The justification is to increase
the total number of registers without raising problems in the instruction for-
mat or in the speed of the general-purpose register file. This compromise,
however, is not orthogonal.

We introduce MIPS by showing how it follows these recommendations. Like
most recent computers, MIPS emphasizes

® a simple load-store instruction set

» design for pipelining efficiency (discussed in Appendix A), including a fixed
instruction set encoding

m efficiency as a compiler target

MIPS provides a good architectural model for study, not only because of the pop-
ularity of this type of processor, but also because it is an easy architecture to
understand. We will use this architecture again in Appendix A and in Chapters 2
and 3, and it forms the basis for a number of exercises and programming projects.

In the years since the first MIPS processor in 1985, there have been many ver-
sions of MIPS (see Appendix J). We will use a subset of what is now called
MIPS64, which will often abbreviate to just MIPS, but the full instruction set is
found in Appendix J.

B-34

Appendix B Instruction Set Principles and Examples

Registers for MIPS

MIPS64 has 32 64-bit general-purpose registers (GPRs). named RO, R1. ..., R31.
GPRs are also sometimes known as integer registers. Additionally, there is a set
of 32 floating-point registers (FPRs), named FO. F1, . . ., F31, which can hold 32
single-precision (32-bit) values or 32 double-precision (64-bit) values. (When
holding one single-precision number, the other half of the FPR is unused.) Both
single- and double-precision floating-point operations (32-bit and 64-bit) are pro-
vided. MIPS also includes instructions that operate on two single-precision oper-
ands in a single 64-bit floating-point register.

The value of RO is always 0. We shall see later how we can use this register to
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the general-purpose
registers. An example is the floating-point status register, used to hold informa-
tion about the results of floating-point operations. There are also instructions for
moving between an FPR and a GPR.

Data Types for MIPS

The data types are 8-bit bytes, 16-bit half words, 32-bit words, and 64-bit double
words for integer data and 32-bit single precision and 64-bit double precision for
floating point. Half words were added because they are found in languages like C
and are popular in some programs, such as the operating systems, concerned
about size of data structures. They will also become more popular if Unicode
becomes widely used. Single-precision floating-point operands were added for
similar reasons. (Remember the early warning that you should measure many
more programs before designing an instruction set.)

The MIPS64 operations work on 64-bit integers and 32- or 64-bit floating
point. Bytes. half words, and words are loaded into the general-purpose registers
with either zeros or the sign bit replicated to fill the 64 bits of the GPRs. Once
loaded, they are operated on with the 64-bit integer operations.

Addressing Modes for MIPS Data Transfers

The only daia addressing modes are immediate and displacement, both with 16-
bit fields. Register indirect is accomplished simply by placing 0 in the 16-bit dis-
placement field, and absolute addressing with a 16-bit field is accomplished by
using register O as the base register. Embracing zero gives us four effective
modes, although only two are supported in the architecture.

MIPS memory is byte addressable with a 64-bit address. It has a mode bit that
allows software to select either Big Endian or Little Endian. As it is a load-store
architecture, all references between memory and either GPRs or FPRs are
through loads or stores. Supporting the data types mentioned above, memory
accesses involving GPRs can be to a byte, half word, word, or double word. The

B.9 Putting It All Together: The MIPS Architecture = B-35

I-type instruction

B 5 5
AkOpcodeQ I rn

Encodes: Loads and stores cf bytes, half words, words,
double words. All immediates (rt - rs op immediate)

Conditional branch instructior:s {rs is register. rd unused)
Jump register, jump and link register
{rd = 0, rs = destination, tmmediate = 0}

R-type instruction

6 5
FOpcodeJ rs i rt o ! shamt

Register-register ALU operations: rd - rs funct rt
Function encodes the data path operation: Add, Sub, . ..
Read/write special registers and moves

J-type instruction
26

Offset added to PC

Jump and jump and fink
Trap and return from exception

Figure B.22 Instruction layout for MIPS. All instructions are encoded in one of three
types, with common fields in the same location in each format.

FPRs may be loaded and stored with singie-precision or double-precision num-
bers. All memory accesses must be aligned.

MIPS Instruction Format

Since MIPS has just two addressing modes, these can be encoded into the
opcode. Following the advice on making the processor easy to pipeline and
decode, all instructions are 32 bits with a 6-bit primary opcode. Figure B.22
shows the instruction layout. These formats are simple while providing 16-bit
fields for displacement addressing, immediate constants, or PC-relative branch
addresses.

Appendix J shows a variant of MIPS—called MIPS]16—which has 16-bit and
32-bit instructions to improve code density for embedded applications. We will
stick to the traditional 32-bit format in this book.

MIPS Operations

MIPS supports the list of simple operations recommended above plus a few oth-
ers. There are four broad classes of instructions: loads and stores, ALU opera-
tions, branches and jumps, and floating-point operations.

B-36 Appendix B Instruction Set Principles and Examples

Any of the general-purpose or floating-point registers may be loaded or

stored, except that loading RO has no effect. Figure B.23 gives examples of the
load and store instructions. Single-precision floating-point numbers occupy half a
floating-point register. Conversions between single and double precision must be
done explicitly. The floating-point format is IEEE 754 (see Appendix I). A list of
all the MIPS instructions in our subset appears in Figure B.26 (page B-40).

To understand these figures we need to introduce a few additional extensions

to our C description language used initially on page B-9:

A subscript is appended to the symbol « whenever the length of the datum
being transferred might not be clear. Thus, <, means transfer an n-bit quan-
tity. We use x, y « z to indicate that z should be transferred to x and y.

A subscript is used to indicate selection of a bit from a field. Bits are labeled
from the most-significant bit starting at 0. The subscript may be a single digit
(e.g., Regs [R4], yields the sign bit of R4) or a subrange (e.g., Regs [R3] s ¢3
yields the least-significant byte of R3).

The variable Mem, used as an array that stands for main memory. is indexed by
a byte address and may transfer any number of bytes.

A superscript is used to replicate a. field (e.g.. 0% yields a field of zeros of
length 48 bits).

The symbol ## is used to concatenate two fields and may appear on either

side of a data transfer.

Example instruction

Instruction name

Meaning

LD R1,30(R2)

Load double word

Regs [R1] «—¢, Mem[30+Regs[R2]]

LD R1,1000(RO)

Load double word

Regs [R1] ¢, Mem[1000+0]

LW R1,60(R2)

Load word

Regs[R1]¢g, (Mem[60+Regs[R2]1,)3? ## Mem[60+Regs[R2]]

LB R1,40(R3)

Load byte

Regs[R1] ¢, (Mem[40+Regs[R3]1],)%" ##
Mem{40+Regs[R31]

LBU R1,40(R3)

Load byte unsigned

Regs[R1]¢—¢, 07 ## Mem[40+Regs[R3]]

LH R1,40(R3) Load half word Regs [R1] ¢, (Mem[40+Regs[R3]],)*® ##
Mem[40+Regs [R3]] ## Mem[41+Regs[R3]]
L.S F0,50(R3) Load FP single Regs [FO] <, Mem[50+Regs[R3]] ## 0%

L.D F0,50(R2)

Load FP double

Regs [F0] ¢~¢4 Mem[50+Regs [R2]]

SD R3,500(R4)

Store double word

Mem[500+Regs [R4]] ¢, Regs[R3]

SW R3,500(R4)

Store word

Mem[500+Regs [R4]] ¢z, Regs[R3] 11 43

S.S F0,40(R3)

Store FP single

Mem[40+Regs[R3]]«;, Regs [FO], s,

S.D FO0,40(R3)

Store FP double

Mem[40+Regs[R3]] <, Regs [FO]

SH R3,502(R2)

Store half

Mem[502+Regs [R2]] ¢, Regs [R3]44 43

SB R2,41(R3)

Store byte

Mem[41+Regs[R3]]« Regs[R2] 54 ¢3

Figure B.23 The load and store instructions in MIPS. All use a single addressing mode and require that the mem-
ory value be aligned. Of course, both loads and stores are available for all the data types shown.

B.9 Putting It All Together: The MIPS Architecture = B-37

Example instruction Instruction name Meaning

DADDU R1,RZ2,R3 Add unsigned Regs[R1] «Regs[R2] +Regs [R3]
DADDIU R1,R2,#3 Add immediate unsigned Regs[R1]«-Regs[R2]+3

LUI RI1,#42 Load upper immediate Regs [R1]«032##42##0'6

DSLL R1,R2,#5 Shift left logical Regs [R1] «<Regs[R2]<<5

SLT R1,R2,R3 Set less than if (Regs[R2]1<Regs[R3])

Regs[R1]«1 else Regs[R1]«0

Figure B.24 Examples of arithmetic/logical instructions on MIPS, both with and
without immediates.

As an example, assuming that R8 and R10 are 64-bit registers:
Regs [R10]3,. 3 < 32(Mem[Regs[R8]1o)*" ## Mem[Regs[R8]]

means that the byte at the memory location addressed by the contents of register
RS is sign-extended to form a 32-bit quantity that is stored into the lower half of
register R10. (The upper half of R10 is unchanged.)

All ALU instructions are register-register instructions. Figure B.24 gives
some examples of the arithmetic/logical instructions. The operations include sim-
ple arithmetic and logical operations: add. subtract, AND, OR, XOR, and shifts.
Immediate forms of all these instructions are provided using a 16-bit sign-
extended immediate. The operation LUI (Joad upper immediate) loads bits 32
through 47 of a register. while setting the rest of the register to 0. LUT allows a 32-
bit constant to be built in two instructions, or a data transfer using any constant
32-bit address in one extra instruction.

As mentioned above, RO is used to synthesize popular operations. Loading a
constant is simply an add immediate where the source operand is RO, and a
register-register move is simply an add where one of the sources is RO. (We
sometimes use the mnemonic LI, standing for load immediate, to represent the
former, and the mnemonic MOV for the latter.)

MIPS Control Flow Instructions

MIPS provides compare instructions, which compare two registers to see if the
first is less than the second. If the condition is true, these instructions place a 1 in
the destination register (to represent true); otherwise they place the value 0.
Because these operations “set” a register, they are called set-equal, set-not-equal,
set-less-than, and so on. There are also immediate forms of these compares.
Control is handled through a set of jumps and a set of branches. Figure B.25
gives some typical branch and jump instructions. The four jump instructions are
differentiated by the two ways to specify the destination address and by whether
or not a link is made. Two jumps use a 26-bit offset shifted 2 bits and then replace

B-38

Appendix B Instruction Set Principles and Examples

Example

instruction Instruction name Meaning

J name Jump PCs6. g3¢<—name

JAL name Jump and link Regs[R31]&PC+8; PC3q ¢3¢—name;
((PC+4)-2%") < name < ((PC+4)+2%7)

JALR R2 Jump and link register Regs[R31]«-PC+8; PC«Regs[R2]

JR R3 Jump register PC«Regs [R3]

BEQZ R4,name Branch equal zero if (Regs[R4]==0) PCe—name;
((PC+4)-2Y) < name < ((PC+4)+2Y7)

BNE R3,R4,name Branch not equal zero if (Regs[R3]!= Regs[R4]) PC«name;
((PC+4)-27) < name < ((PC+4)+2'7)

MOVZ R1,RZ,R3 Conditional move if (Regs[R3]==0) Regs[R1]«Regs[R2]
if zero

Figure B.25 Typical control flow instructions in MIPS. All control instructions, except
jumps to an address in a register, are PC-relative. Note that the branch distances are
longer than the address field would suggest; since MIPS instructions are all 32 bits long,
the byte branch address is multiplied by 4 to get a longer distance.

the lower 218 bits of the program counter (of the instruction sequentially follow-
ing the jump) to determine the destination address. The other two jump instruc-
tions specify a register that contains the destination address. There are two flavors
of jumps: plain jump and jump and link (used for procedure calls). The latter
places the return address—the address of the next sequential instruction—in R31.

All branches are conditional. The branch condition is specified by the
instruction. which may test the register source for zero or nonzero; the register
may conta:n a data value or the result of a compare. There are also conditional
branch instructions to test for whether a register is negative and for equality
between two registers. The branch-target address is specified with a 16-bit signed
offset that is shifted left two places and then added to the program counter, which
is pointing to the next sequential instruction. There is also a branch to test the
floating-point status register for floating-point conditional branches, described
later.

Appendix A and Chapter 2 show that conditional branches are a major chal-
lenge to pipelined execution; hence many architectures have added instructions to
convert a simple branch into a conditional arithmetic instruction. MIPS included
conditional move on zero or not zero. The value of the destination register either
is left unchanged or is replaced by a copy of one of the source registers depend-
ing on whether or not the value of the other source register is zero.

MIPS Floating-Point Operations

Floating-point instructions manipulate the floating-point registers and indicate
whether the operation to be performed is single or double precision. The opera-

B.10

Pitfall

B.10 Fallacies and Pitfalls = B-39

tions MOV.S and MOV.D copy a single-precision (MOV.S) or double-precision
(MOV.D) floating-point register to another register of the same type. The opera-
tions MFC1, MTC1, DMFC1, DMTC1 move data between a single or double fioating-
point register and an integer register. Conversions from integer to floating point
are also provided, and vice versa.

The floating-point operations are add, subtract, multiply, and divide; a suffix
D is used for double precision, and a suffix S is used for single precision (e.g.,
ADD.D, ADD.S, SUB.D, SUB.S, MUL.D, MUL.S, DIV.D, DIV.S). Floating-point
compares set a bit in the special floating-point status register that can be tested
with a pair of branches: BC1T and BC1F, branch floating-point true and branch
floating-point false.

To get greater performance for graphics routines, MIPS64 has instructions
that perform two 32-bit floating-point operations on each half of the 64-bit
floating-point register. These paired single operations include ADD.PS, SUB.PS,
MUL.PS, and DIV.PS. (They are loaded and stored using double-precision loads
and stores.)

Giving a nod toward the importance of multimedia applications, MIPS64 also
includes both integer and floating-point multiply-add instructions: MADD, MADD. S,
MADD.D, and MADD.PS. The registers are all the same width in these combined
operations. Figure B.26 contains a list of a subset of MIPS64 operations and their
meaning.

MIPS Instruction Set Usage

To give an idea which instructions are popular, Figure B.27 shows the frequency
of instructions and instruction classes for five SPECint2000 programs, and Figure
B.28 shows the same data for five SPECfp2000 programs.

Fallacies and Pitfalls

Architects have repeatedly tripped on common, but erroneous, beliefs. In this
section we look at a few of them.

Designing a “high-level” instruction set feature specifically oriented to supporting
a high-level language structure.

Attempts to incorporate high-level language features in the instruction set have
led architects to provide powerful instructions with a wide range of flexibility.
However, often these instructions do more work than is required in the frequent
case, or they don’t exactly match the requirements of some languages. Many
such efforts have been aimed at eliminating what in the 1970s was called the
semantic gap. Although the idea is to supplement the instruction set with

B-40

Appendix B Instruction Set Principles and Examples

Instruction type/opcode

Instruction meaning

Data transfers

Move duta between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB,LBYU,SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH,LHU,SH Load half word, load half word unsigned, store half word (to/from integer registers)
LW, LWU,SW Load word, load word unsigned. store word (to/from integer registers)

LD,SD Load double word, store double word (to/from integer registers)

L.s,L.D,S.5,S.D Load SP float. load DP float, store SP float, store DP float

MFCO,MTCO Copy from/to GPR to/from a special register

MOV.S,MOV.D Copy one SP or DP FP register to another FP register

MFC1,MTC1 Copy 32 bits to/from FP registers from/to integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow
DADD,DADDI,DADDU,DADDIU Add, add immediate (all immediates are 16 bits); signed and unsigned

DsuB,DSUBU Subtract; signed and unsigned

DMuL,DMULU,DDIV, Multiply and divide. signed and unsigned; multiply-add; all operations take and yield 64-
DDIVU,MADD bit values

AND,ANDI And, and immediate

OR,0RI,XOR, XORI Or, or irnmediate, exclusive or, exclusive or immediate

LUI Load upper immediate; loads bits 32 to 47 of register with immediate, then sign-extends
DSLL,DSRL,DSRA,DSLLY, Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift left logical,
DSRLV,DSRAV right logical, right arithmetic

SLT,SLTI,SLTU,SLTIU Set less than, set less than immediate; signed and unsigned

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4

BEQ,BNE Branch GPR equal/not equal; 16-bit offset from PC + 4

BC1T,BC1F Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4
MOVN,MOVZ Copy GPR to another GPR if third GPR is negative, zero

J,JR Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

JAL,JALR Jump and link: save PC + 4 in R31. target is PC-relative (JAL) or a register (JALR)
TRAP Transfer to operating system at a vectored address

ERET Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADD.D,ADD.S,ADD.PS
SuB.D,SUB.S,SUB.PS
MUL.D,MUL.S,MUL.PS
MADD.D,MADD.S,MADD.PS

DIV.D,DIV.S,DIV.PS
CVT. .
C._.D,C._.S

Add DP, SP numbers, and pairs of SP numbers

Subtract DP, SP numbers, and pairs of SP numbers
Muitiply DP, SP floating point, and pairs of SP numbers
Multiply-add DP, SP numbers and pairs of SP numbers
Divide DP, SP floating point, and pairs of SP numbers

Convert instructions: CVT.x.y converts from type X to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

DP and SP compares: “_ "= LT,GT,LE,GE,EQ,NE; sets bit in FP status register

Figure B.26 Subset of the instructions in MIPS64. Figure B.22 lists the formats of these instructions. SP = single
precision; DP = double precision. This list can also be found on the back inside cover.

B.10 Fallacies and Pitfalls =« B-41

Integer
Instruction gap gcc gzip mcf peribmk average
load 26.5% 25.1% 20.1% 30.3% 28.7% 26%
store 10.3% 13.2% 51% 4.3% 16.2% 10%
add 21.1% 19.0% 26.9% 10.1% 16.7% 19%
sub 1.7% 2.2% 5.1% 3.7% 2.5% 3%
mul 1.4% 0.1% 0%
compare 2.8% 6.1% 6.6% 6.3% 3.8% 5%
load imm 4.8% 2.5% 1.5% 0.1% 1. 7% 2%
cond branch 9.3% 12.1% 11.0% 17.5% 10.9% 12%
cond move 0.4% 0.6% 1.1% 0.1% 1.9% 1%
jump 0.8% 0.7% 0.8% 0.7% 1.7% 1%
call 1.6% 0.6% 0.4% 32% 1.1% 1%
return 1.6% 0.6% 0.4% 32% 1.1% 1%
shift 3.8% 1.1% 2.1% 1.1% 0.5% 2%
and 4.3% 4.6% 9.4% 0.2% 1.2% 4%
or 7.9% 8.5% 48% 176% 8.7% 9%
xor 1.8% 2.1% 44% 5% 2.8% 3%
other logical 0.1% 0.4% 01% 01% 0.3% 0%
load FP B 0%
store FP 7 0%
add FP B 0%
sub FP - 0%
mul FP B 0%
div FP 0%
mov reg-reg FP 0%
compare FP B 0%
cond mov FP - 0%
other FP 0%

Figure B.27 MIPS dynamic instruction mix for five SPECint2000 programs. Note that integer register-register
move instructions are included in the or instruction. Blank entries have the value 0.0%.

additions that bring the hardware up to the level of the language, the additions
can generate what Wulf [1981] has called a semantic clash:

... by giving too much semantic content to the instruction, the computer designer
made it possible to use the instruction only in limited contexts. [p. 43]

More often the instructions are simply overkill—they are too general for the
most frequent case, resulting in unneeded work and a slower instruction. Again,
the VAX CALLS is a good example. CALLS uses a callee save strategy (the registers

B-42 Appendix B Instruction Set Principles and Examples

Instruction applu art equake lucas swim FP average
load 13.8% 18.1% 22.3% 10.6% 9.1% 15%
store 2.9% 0.8% 3.4% 1.3% 2%
add 30.4% 30.1% 17.4% 1.1% 24.4% 23%
sub 2.5% 0.1% 2.1% 3.8% 2%
mul 2.3% 1.2% 1%
compare 7.4% 2.1% 2%
load imm 13.7% 1.0% 1.8% 9.4% 5%
cond branch 2.5% 11.5% 2.9% 0.6% 1.3% 4%
cond mov 0.3% 0.1% 0%
jump 0.1% 0%
call 0.7% 0%
return 0.7% 0%
shift 0.7% 0.2% 1.9% 1%
and 0.2% 1.8% 0%
or 0.8% 1.1% 2.3% 1.0% 7.2% 2%
Xor 3.2% 0.1% 1%
other logical 0.1% 0%
load FP 11.4% 12.0% 19.7% 16.2% 16.8% 15%
store FP 4.2% 4.5% 2.7% 18.2% 5.0% 7%
add FP 2.3% 4.5% 9.8% 8.2% 9.0% 7%
sub FP 2.9% 1.3% 7.6% 4.7% 3%
mu] FP 8.6% 4.1% 12.9% 9.4% 6.9% 8%
div FP 0.3% 0.6% 0.5% 0.3% 0%
mov reg-reg FP 0.7% 0.9% 1.2% 1.8% 0.9% 1%
compare FP 0.9% 0.6% 0.8% 0%
cond mov FP 0.6% 0.8% 0%
other FP 1.6% 0%

Figure B.28 MIPS dynamic instruction mix for five programs from SPECfp2000. Note that integer register-register
move instructions are included in the or instruction. Blank entries have the value 0.0%.

to be saved are specified by the callee), but the saving is done by the call instruc-
tion in the caller. The CALLS instruction begins with the arguments pushed on the
stack, and then takes the following steps:

1. Align the stack if needed.
2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as men-
tioned in Section B.8). The mask is kept in the called procedure’s code—this

Fallacy

Pitfall

B.10 Fallacies and Pitfalls = B-43

permits the callee to specify the registers to be saved by the caller even with
separate compilation.

4. Push the return address on the stack, and then push the top and base of stack
pointers (for the activation record).

Clear the condition codes, which sets the trap enable to a known state.
Push a word for status information and a zero word on the stack.

Update the two stack pointers.

®©® N o W

Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of over-
head. Most procedures know their argument counts, and a much faster linkage
convention can be established using registers to pass arguments rather than the
stack in memory. Furthermore, the CALLS instruction forces two registers to be
used for linkage, while many languages require only one linkage register. Many
attempts to support procedure call and activation stack management have failed
to be useful, either because they do not match the language needs or because they
are 100 general and hence too expensive to use.

The VAX designers provided a simpler instruction, JSB, that is much faster
since it only pushes the return PC on the stack and jumps to the procedure.
However, most VAX compilers use the more costly CALLS instructions. The call
instructions were included in the architecture to standardize the procedure link-
age convention. Other computers have standardized their calling convention by
agreement among compiler writers and without requiring the overhead of a com-
plex, very general procedure call instruction.

There is such a thing as a typical program.

Many people would like to believe that there is a single “typical” program that
could be used to design an optimal instruction set. For example, see the synthetic
benchmarks discussed in Chapter 1. The data in this appendix clearly show that
programs can vary significantly in how they use an instruction set. For example,
Figure B.29 shows the mix of data transfer sizes for four of the SPEC2000 pro-
grams: It would be hard to say what is typical from these four programs. The
variations are even larger on an instruction set that supports a class of applica-
tions, such as decimal instructions, that are unused by other applications.

Innovating at the instruction set architecture to reduce code size without account-
ing for the compiler.

Figure B.30 shows the relative code sizes for four compilers for the MIPS
instruction set. Whereas architects struggle to reduce code size by 30% to 40%,
different compiler strategies can change code size by much larger factors. Similar
to performance optimization techniques, the architect should start with the tight-
est code the compilers can produce before proposing hardware innovations to
save space.

B-44 Appendix B Instruction Set Principles and Examples

Doutle word
(64 bits)

] 403%,
Word ot
{32 bits)

89, -
18% [w applu i
0% equake
Haslf word : 0% W gzip !
(16 bits) — 19% { 1 perl I

i

© 3%
0%
Byte : 0%
(8 bits) ~ 22%
! 18%
0% 20% 40% 60% 80% 100%

Figure B.29 Data reference size of four programs from SPEC2000. Although you can
calculate an average size, it would be hard to claim the average is typical of programs.

Green Hills
Apogee Software Multi2000 Algorithmics

Compiler Version 4.1 Version 2.0 SDE4.0B IDT/c7.2.1
Architecture MIPS IV MIPS IV MIPS 32 MIPS 32
Processor NEC VR5432 NEC VR5000 IDT 32334 IDT 79R(C32364
Autocorrelation kernel 1.0 2.1 1.1 2.7
Convolutional encoder kernel 1.0 1.9 1.2 24
Fixed-point bit allocation kernel 1.0 2.0 1.2 2.3
Fixed-point complex FFT kernel 1.0 1.1 2.7 1.8
Viterbi GSM decoder kernel 1.0 1.7 0.8 1.1
Geometric mean of five kernels 1.0 1.7 1.4 2.0

Figure B.30 Code size relative to Apogee Software Version 4.1 C compiler for Telecom application of EEMBC
benchmarks. The instruction set architectures are virtually identical, yet the code sizes vary by factors of 2. These
results were reported February-June 2000.

Fallacy An architecture with flaws cannot be successful.

The 80x86 provides a dramatic example: The instruction set architecture is one
only its creators could love (sce Appendix J). Succeeding generations of Intel
engineers have tried to correct unpopular architectural decisions made in design-
ing the 80x&6. For example, the 80x86 supports segmentation, whereas all others
picked paging; it uses extended accumulators for integer data, but other proces-
sors use general-purpose registers: and it uses a stack for floating-point data,
when everyone else abandoned execution stacks long before.

Despite these major difficulties. the 80x86 architecture has been enormously
successful. The reasons are threefold: first, its selection as the microprocessor in

Fallacy

B.11

B.11 Concluding Remarks = B-45

the initial IBM PC makes 80x86 binary compatibility extremely valuable. Sec-
ond, Moore’s Law provided sutficient resources for 80x86 microprocessors to
translate to an internal RISC instruction set and then execute RISC-like instruc-
tions. This mix enables binary compatibility with the valuable PC software base
and performance on par with RISC processors. Third, the very high volumes of
PC microprocessors means Intel can easily pay for the increased design cost of
hardware translation. In addition, the high volumes allow the manufacturer to go
up the learning curve, which lowers the cost of the product.

The larger die size and increased power for translation may be a liability for
embedded applications, but it makes tremendous economic sense for the desktop.
And its cost-performance in the desktop also makes it attractive for servers, with
its main weakness for servers being 32-bit addresses; which was resolved with
the 64-bit addresses of AMD64 (see Chapter 5)

You can design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hard-
ware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at the time they were made
look like mistakes. For example, in 1975 the VAX designers overemphasized the
importance of code size efficiency, underestimating how important ease of
decoding and pipelining would be five years later. An example in the RISC camp
is delayed branch (see Appendix J). It was a simple matter to control pipeline
hazards with five-stage pipelines, but a challenge for processors with longer pipe-
lines that issue multiple instructions per clock cycle. In addition, almost all archi-
tectures eventually succumb to the lack of sufficient address space.

In general, avoiding such flaws in the long run would probably mean compro-
mising the efficiency of the architecture in the short run, which is dangerous,
since a new instruction set architecture must struggle to survive its first few years.

Concluding Remarks

The earliest architectures were limited in their instruction sets by the hardware
technology of that time. As soon as the hardware technology permitted, computer
architects began looking for ways to support high-level languages. This search
led to three distinct periods of thought about how to support programs efficiently.
In the 1960s, stack architectures became popular. They were viewed as being a
good match for high-level languages—and they probably were, given the com-
piler technology of the day. In the 1970s, the main concern of architects was how
to reduce software costs. This concern was met primarily by replacing software
with hardware, or by providing high-level architectures that could simplify the
task of software designers. The result was both the high-level language computer
architecture movement and powerful architectures like the VAX, which has a
large number of addressing modes, multiple data types, and a highly orthogonal
architecture. In the 1980s, more sophisticated compiler technology and a

B-46

Appendix B Instruction Set Principles and Examples

renewed emphasis on processor performance saw a return to simpler architec-
tures, based mainly on the load-store style of computer.
The following instruction set architecture changes occurred in the 1990s:

® Address size doubles—The 32-bit address instruction sets for most desktop
and server processors were extended to 64-bit addresses, expanding tae width
of the registers (among other things) to 64 bits. Appendix J gives three exam-
ples of architectures that have gone from 32 bits to 64 bits.

» Optimization of conditional branches via conditional execution—In Chapters
2 and 3. we see that conditional branches can limit the performance of
aggressive computer designs. Hence, there was interest in replacing
conditional branches with conditional completion ot operations, such as con-
ditional move (see Appendix G), which was added to most instruction sets

m Optimization of cache performance via prefetch—Chapter 5 explains the
increasing role of memory hierarchy in performance of computers, with a
cache miss on some computers taking as many instruction times as page
faults took on earlier computers. Hence, prefetch instructions were added to
try to hide the cost of cache misses by prefetching (see Chapter 5).

m Support for multimedia—Most desktop and embedded instruction sets were
extended with support for multimedia applications.

m Faster floating-point operations—Appendix 1 describes operations added to
enhance floating-point performance, such as operations that perform a multi-
ply and an add and paired single execution. (We include them in MIPS.)

Between 1970 and 1985 many thought the primary job of the computer archi-
tect was the design of instruction sets. As a result, textbooks of that era empha-
size instruction set design, much as computer architecture textbooks of the 19505
and 1960s emphasized computer arithmetic. The educated architect was expected
to have strong opinions about the strengths and especially the weaknesses of the
popular computers. The importance of binary compatibility in quashing innova-
tions in instruction set design was unappreciated by many researchers and text-
book writers, giving the impression that many architects would get a chance to
design an instruction set.

The definition of computer architecture today has been expanded to include
design and evaluation of the full computer system—not just the definition of the
instruction set and not just the processor—and hence there are plenty of topics
for the architect to study. In fact, the material in this appendix was a central point
of the book in its first edition in 1990, but now is included in an appendix prima-
rily as reference material!

B.12

B.12 Historical Perspective and References = B-47

Appendix J may satisfy readers interested in instruction set architecture: it
describes a variety of instruction sets, which are either important in the market-
place today or historically important, and compares nine popular load-store com-
puters with MIPS.

Historical Perspective and References

Section K.3 (available on the companion CD) features a discussion on the evolu-
tion of instruction sets and includes references for further reading and exploration
of related topics.

Ci1

c2
c3
Ca
cs
6
c7
cs8

Int:oduction

Cache Performance

Six Basic Cache Optimizations

Virtual Memory

Prctection and Examples of Virtual Memory
Fallacies and Pitfalls

Concluding Remarks

Historical Perspective and References

C-Z
C-15
C-22
C-38
C-47
C-56
C-57
C-58

